Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 13: 1054962, 2022.
Article in English | MEDLINE | ID: covidwho-2224773

ABSTRACT

Inflammation is a central pathogenic feature of the acute respiratory distress syndrome (ARDS) in COVID-19. Previous pathologies such as diabetes, autoimmune or cardiovascular diseases become risk factors for the severe hyperinflammatory syndrome. A common feature among these risk factors is the subclinical presence of cellular stress, a finding that has gained attention after the discovery that BiP (GRP78), a master regulator of stress, participates in the SARS-CoV-2 recognition. Here, we show that BiP serum levels are higher in COVID-19 patients who present certain risk factors. Moreover, early during the infection, BiP levels predict severe pneumonia, supporting the use of BiP as a prognosis biomarker. Using a mouse model of pulmonary inflammation, we observed increased levels of cell surface BiP (cs-BiP) in leukocytes during inflammation. This corresponds with a higher number of neutrophiles, which show naturally high levels of cs-BiP, whereas alveolar macrophages show a higher than usual exposure of BiP in their cell surface. The modulation of cellular stress with the use of a clinically approved drug, 4-PBA, resulted in the amelioration of the lung hyperinflammatory response, supporting the anti-stress therapy as a valid therapeutic strategy for patients developing ARDS. Finally, we identified stress-modulated proteins that shed light into the mechanism underlying the cellular stress-inflammation network in lungs.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , SARS-CoV-2 , Inflammation , Endoplasmic Reticulum Chaperone BiP , Lung
2.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2147621

ABSTRACT

Inflammation is a central pathogenic feature of the acute respiratory distress syndrome (ARDS) in COVID-19. Previous pathologies such as diabetes, autoimmune or cardiovascular diseases become risk factors for the severe hyperinflammatory syndrome. A common feature among these risk factors is the subclinical presence of cellular stress, a finding that has gained attention after the discovery that BiP (GRP78), a master regulator of stress, participates in the SARS-CoV-2 recognition. Here, we show that BiP serum levels are higher in COVID-19 patients who present certain risk factors. Moreover, early during the infection, BiP levels predict severe pneumonia, supporting the use of BiP as a prognosis biomarker. Using a mouse model of pulmonary inflammation, we observed increased levels of cell surface BiP (cs-BiP) in leukocytes during inflammation. This corresponds with a higher number of neutrophiles, which show naturally high levels of cs-BiP, whereas alveolar macrophages show a higher than usual exposure of BiP in their cell surface. The modulation of cellular stress with the use of a clinically approved drug, 4-PBA, resulted in the amelioration of the lung hyperinflammatory response, supporting the anti-stress therapy as a valid therapeutic strategy for patients developing ARDS. Finally, we identified stress-modulated proteins that shed light into the mechanism underlying the cellular stress-inflammation network in lungs.

3.
Sci Rep ; 12(1): 3563, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1730317

ABSTRACT

Neurologic impairment persisting months after acute severe SARS-CoV-2 infection has been described because of several pathogenic mechanisms, including persistent systemic inflammation. The objective of this study is to analyze the selective involvement of the different cognitive domains and the existence of related biomarkers. Cross-sectional multicentric study of patients who survived severe infection with SARS-CoV-2 consecutively recruited between 90 and 120 days after hospital discharge. All patients underwent an exhaustive study of cognitive functions as well as plasma determination of pro-inflammatory, neurotrophic factors and light-chain neurofilaments. A principal component analysis extracted the main independent characteristics of the syndrome. 152 patients were recruited. The results of our study preferential involvement of episodic and working memory, executive functions, and attention and relatively less affectation of other cortical functions. In addition, anxiety and depression pictures are constant in our cohort. Several plasma chemokines concentrations were elevated compared with both, a non-SARS-Cov2 infected cohort of neurological outpatients or a control healthy general population. Severe Covid-19 patients can develop an amnesic and dysexecutive syndrome with neuropsychiatric manifestations. We do not know if the deficits detected can persist in the long term and if this can trigger or accelerate the onset of neurodegenerative diseases.


Subject(s)
COVID-19/psychology , Cognition Disorders/psychology , Mental Disorders/psychology , COVID-19/virology , Humans , SARS-CoV-2/isolation & purification , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL